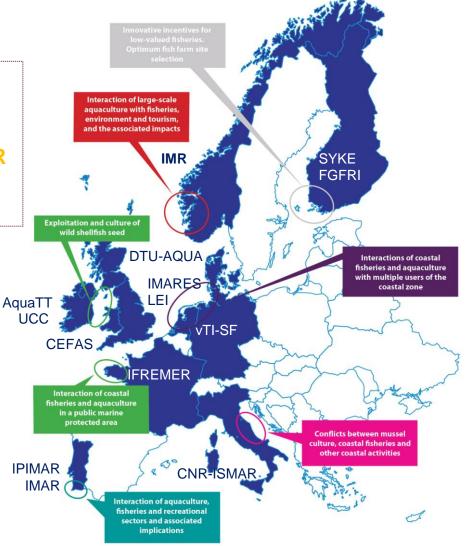
#### COEXIST - Interaction in European coastal waters: A roadmap to sustainable integration of aquaculture and fisheries, Baltic Case Study

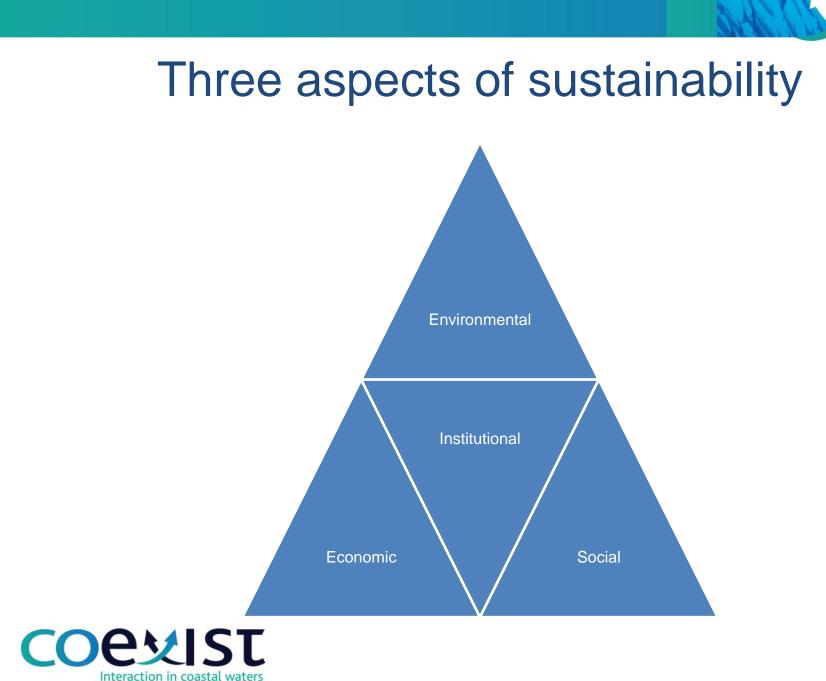
Timo Mäkinen

Finish Game and Fisheries Research Institute Pariseapate, Riga, November 1st 2013

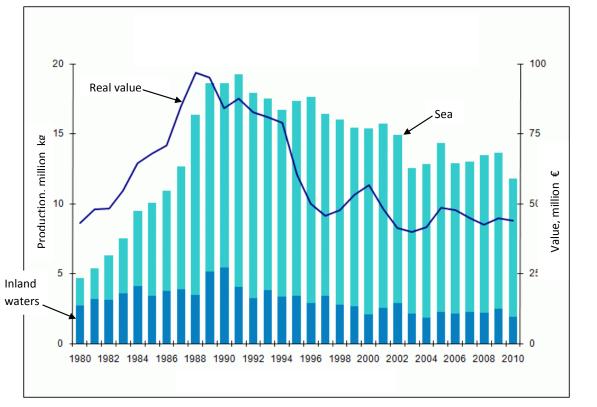


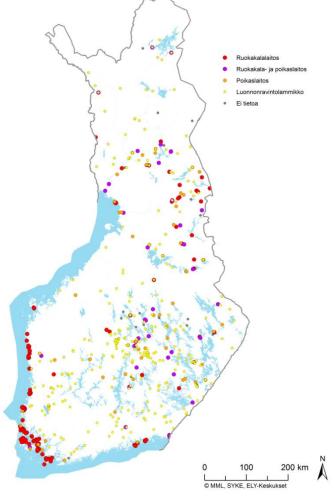

#### 1. COEXIST at a glance

- Title: COEXIST Interaction in European coastal waters: A roadmap to sustainable integration of aquaculture and fisheries
- **Programme:** FP7, Cooperation, Food, Agriculture and Fisheries, and Biotechnology (KBBE)
- Instruments: Coordination and Support Action (Coordination action)
- Total budget: €3,777,931
- **EC contribution: €2,995,500**
- Duration: April 2010 March 2013 (extended until June 2013)
- Consortium: 13 partners from 10 countries
- Coordination: Institute of Marine Research, Norway
- Web: <u>www.coexistproject.eu</u>




#### 3. Consortium and Case Studies

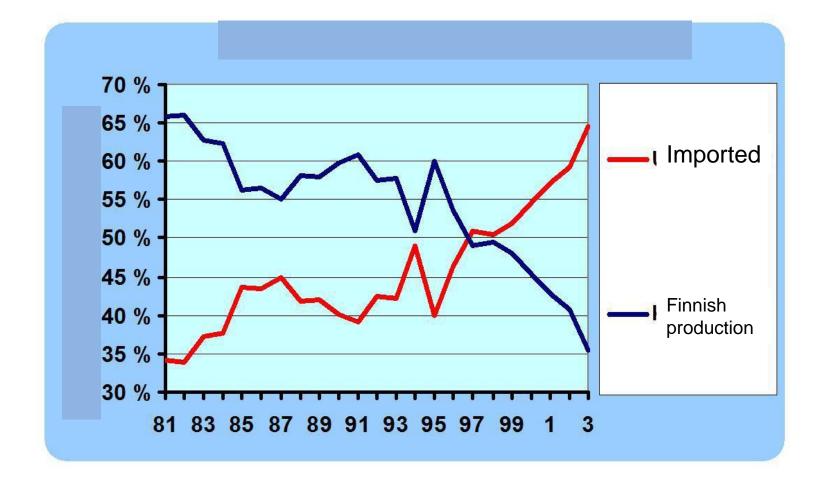






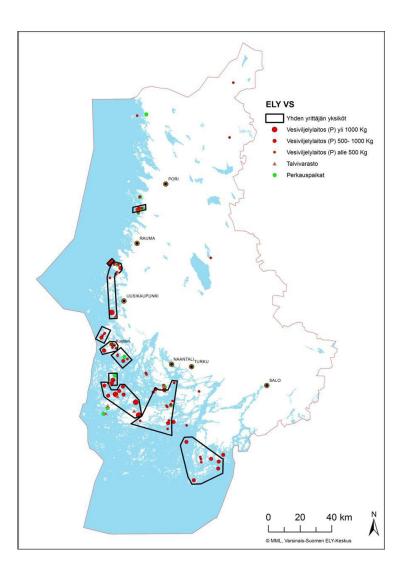

#### Rainbow trout farmed in Finland








Source: kalankasvatuksen ympäristönsuojeluohje

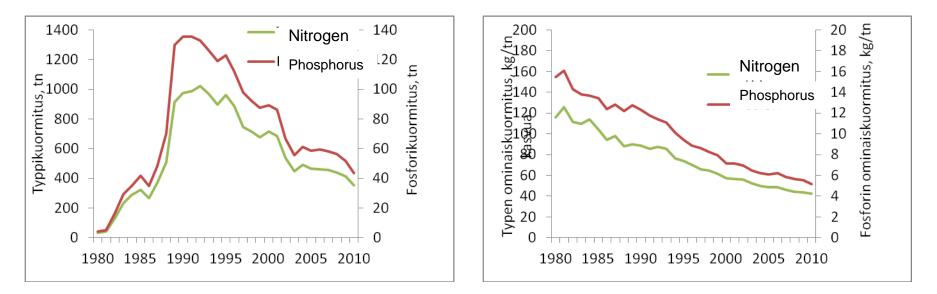

### Market growth by imported salmon





#### Present structure of the fish farming

Dispersed in small units A fish farming company has usually many sites






#### Loading has decreased

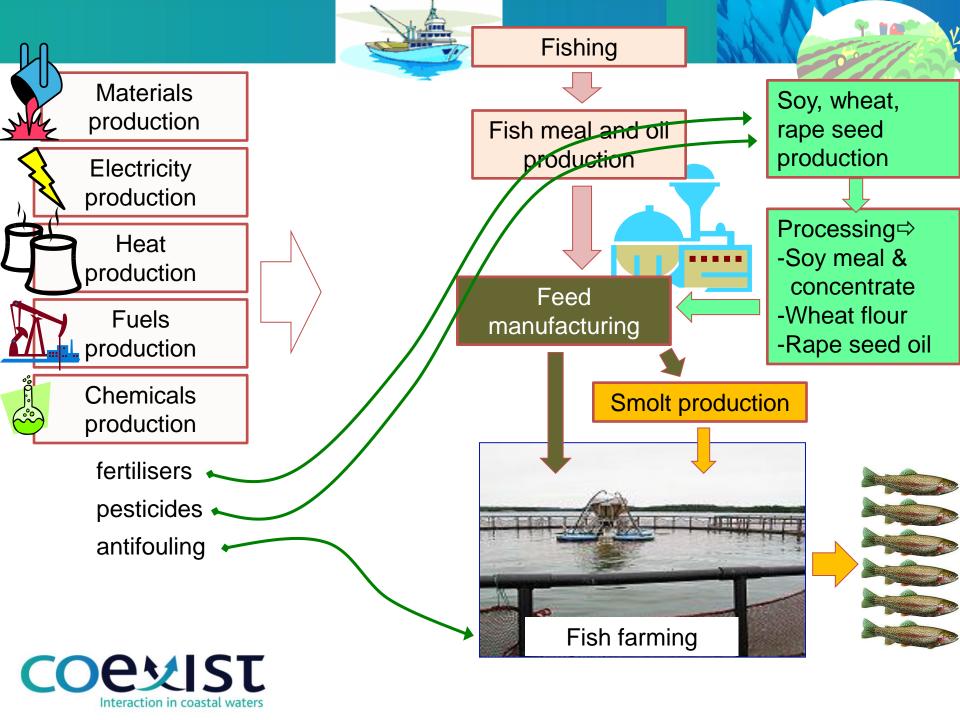
#### Total nitrogen and phosphorus loading

#### Spesific nitrogen and phosphorus loading





Source: kalankasvatuksen ympäristönsuojeluohje


# Life cycle environmental impacts of different fish farming alternatives in the Baltic Sea

<u>Juha Grönroos</u><sup>1</sup>, Frans Silvenius<sup>2</sup>, Markus Kankainen<sup>3</sup>, Kimmo Silvo<sup>1</sup>, Timo Mäkinen<sup>3</sup>

<sup>1</sup> Finnish Environment Institute SYKE

- <sup>2</sup> MTT AgriFood Research Finland
- <sup>3</sup> Finnish Game and Fisheries Research Institute FGFRI



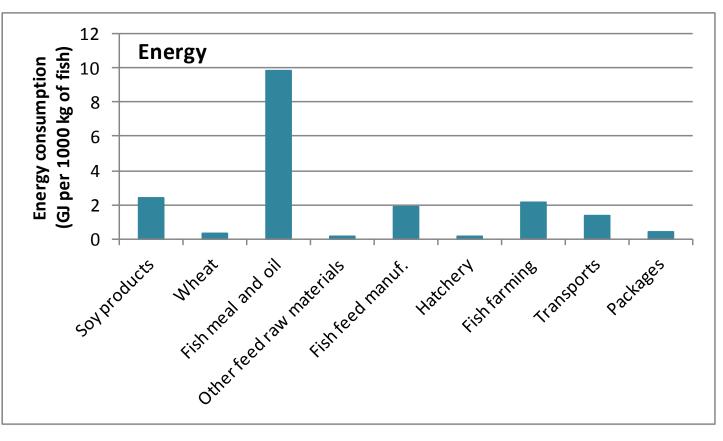


#### **Environmental indicators**

- •Climate change (carbon footprint, CO<sub>2</sub>-equiv.)
- •Eutrophication of the waters (PO<sub>4</sub>-equiv.)
- •Primary energy consumption (GJ)

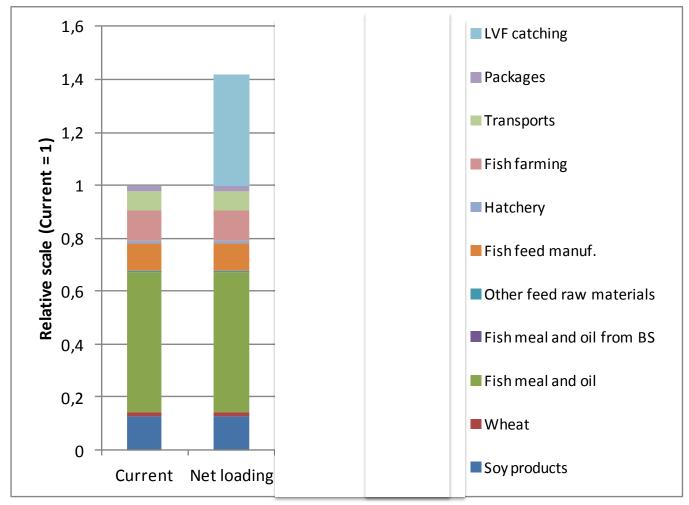
#### **Fish farming options**

- 0. Present situation
- 1. **Net loading option** (fisheries of low-valued stocks for nutrient removal to justify aquaculture licenses)
- 2. **Baltic Sea feed** (nutrient recycling within the Archipelago fisheries and aquaculture)
- 3. Rationalized farming site location strategy (fewer, bigger and better located farms)



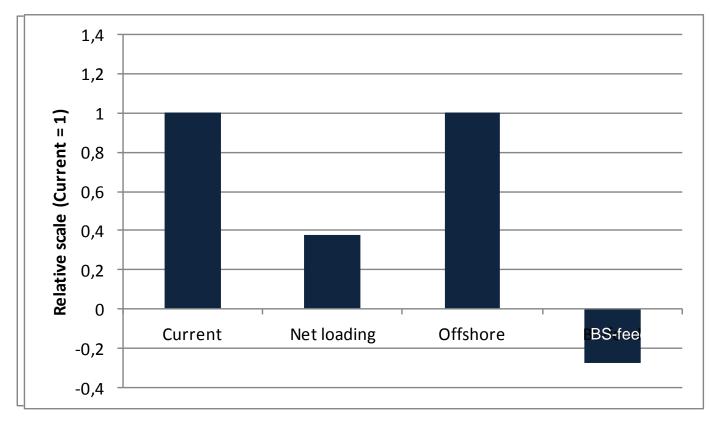

### Management options – what differs?

|                                                         | <u> </u>                                                                                                                                 |                                                                                                         |                                                                        |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                         | Net loading                                                                                                                              | Local feed                                                                                              | Offshore                                                               |
| Fish feed (FF) raw materials production                 | No changes                                                                                                                               | Changes in <b>fishing</b>                                                                               | No changes                                                             |
| Feed manufacturing                                      | No changes                                                                                                                               | <b>Dioxin removal</b> from fish must be<br>included to the system.<br>FF <b>manufacturer</b> may change | No changes                                                             |
| Transport                                               | Low value fish (LWF)<br>transport must be included<br>in the system                                                                      | Transport distances (and means) of fish <b>feed raw materials</b>                                       | Changes in distances<br>and means <b>between</b><br>land and fish farm |
| Smolt production                                        | No changes                                                                                                                               | No changes                                                                                              | No changes                                                             |
| Infra (at farm)                                         | No changes                                                                                                                               | No changes                                                                                              | More <b>heavier</b><br>constructions and<br>boats                      |
| Adjoining system<br>(fuels, electr, heat,<br>chemicals) | No changes                                                                                                                               | If manufacturer of the FF and fish<br>meal and oil changes<br>⇔Changes in <b>energy production</b>      | No changes                                                             |
| Other                                                   | LWF <b>fishing</b> must be<br>included in the system<br>LWF is fed to fur animals<br>( <b>replaces</b> other fish caught<br>from the BS) |                                                                                                         |                                                                        |
| COEX                                                    | SL                                                                                                                                       |                                                                                                         |                                                                        |


Interaction in coastal waters

#### Current case: results






#### Comparison: energy consumption





### Comparison: climate and eutrophication





#### Conclusions

- Present system:
  - Decrease nutrient load from fish farming (practically & techically)
  - Use renewable energy and utilize organic wastes maximally
  - Be awake to the environmental impacts of feed raw materials production
- Net loading: present system and...
  - Result is very sensible for the end use of LVF: if not used in BD production but replaces fish used in fur animal feeding ⇒ net effect ≤ 0
  - Minimise fuel consumption of LVF fishing
- Offshore: see present system
- BS feed: see present system, and...
  - Minimise fuel consumption of fishing
  - A new alternative ⇒ composition of the fish feed is not known yet ⇒ may (significantly) affect to the final results



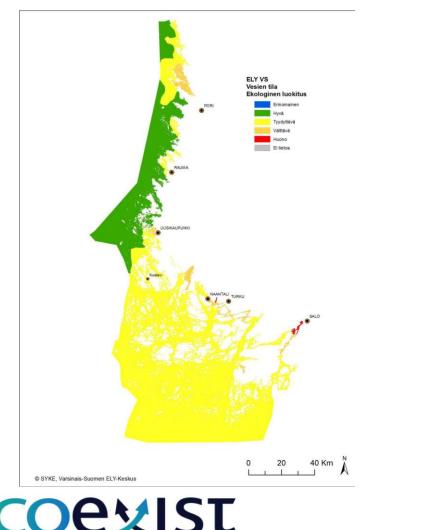
### Site selection plan, objectives

- Recognize the areas especially suitable for aquaculture
- Diminish conflicts and nutrient loading in the inner archipelago
- Harmonize economic and environmental policies to make the aquaculture sustainable
- Make the farming more profitable

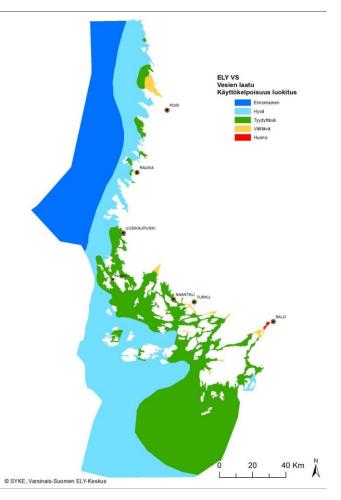
Sources:

http://info.ices.dk/products/CMdocs/CM-2012/Q/Q0212.pdf

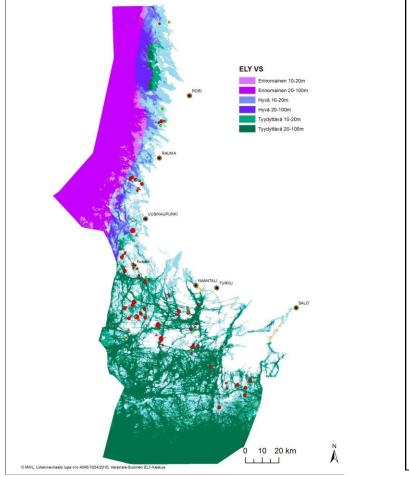
http://www.mmm.fi/attachments/kalariistajaporot/lausuntopyynnot/6E3Tm6zDH/ Vesiviljelyn\_kansallinen\_sijainninohjaussuunnitelma\_110113.pdf

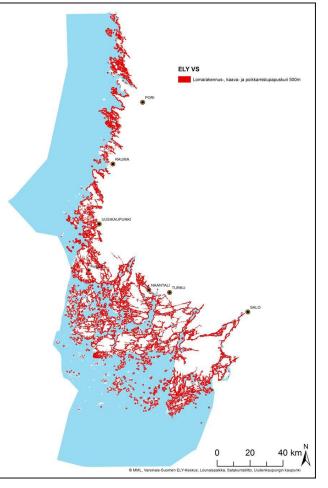



#### Satakunta county as a pilot


- Criteria from a national committee
- A regional planning committee with broad participation
- Expert hearings
- Recognizing the suitable areas with background data using GIS-tools
- Modelling the future production figures
- Environmental impact assessment



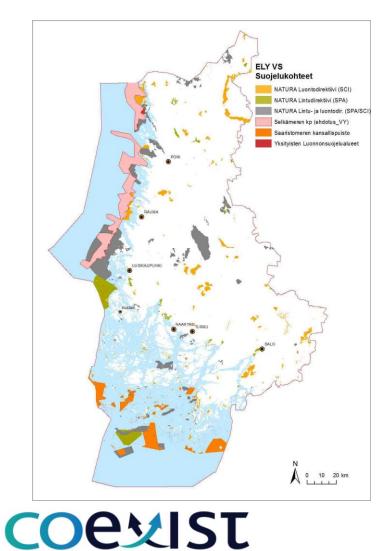

# Criteria: ecological status and usefullness classification of water areas



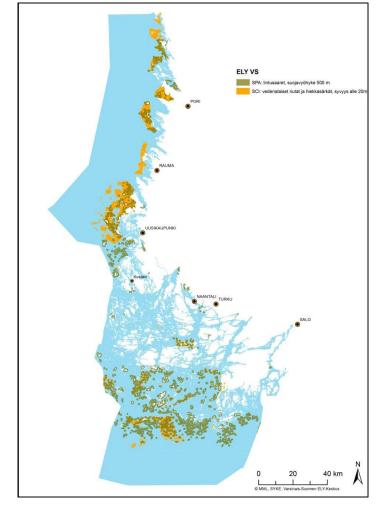

Interaction in coastal waters



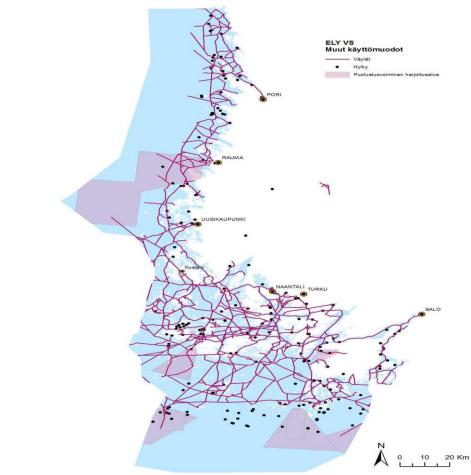
# Criteria: Water depth, Summer houses and the recreational use in the regional plan






### Criteria: Nature protection and Natura


#### areas

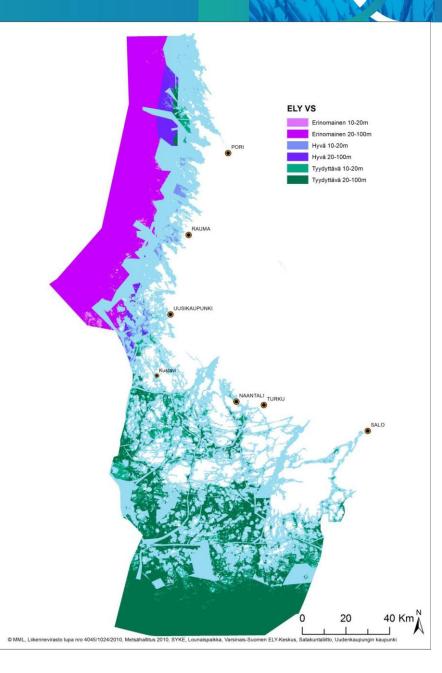


Interaction in coastal waters



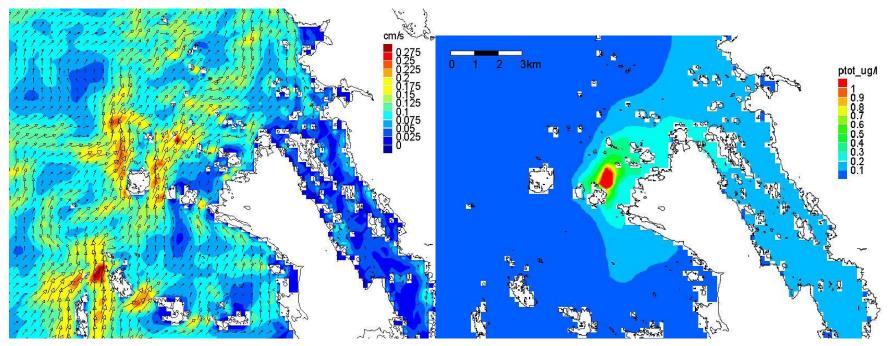
# Criteria: other uses, like shipping routes, military use






# The areas recognized

| Archipelago area            | Area                 | Excluded    |
|-----------------------------|----------------------|-------------|
| SW inner archipelago        | 681 km <sup>2</sup>  | 94 %        |
| SW middle archipelago       | 1285 km <sup>2</sup> | <b>76 %</b> |
| SW outer archipelago        | 4217 km <sup>2</sup> | <b>53 %</b> |
| Gulf of Bothnia inner coast | 828 km <sup>2</sup>  | <b>95</b> % |
| Gulf of Bothnia outer coast | 1543 km <sup>2</sup> | 72 %        |


**67 %** 

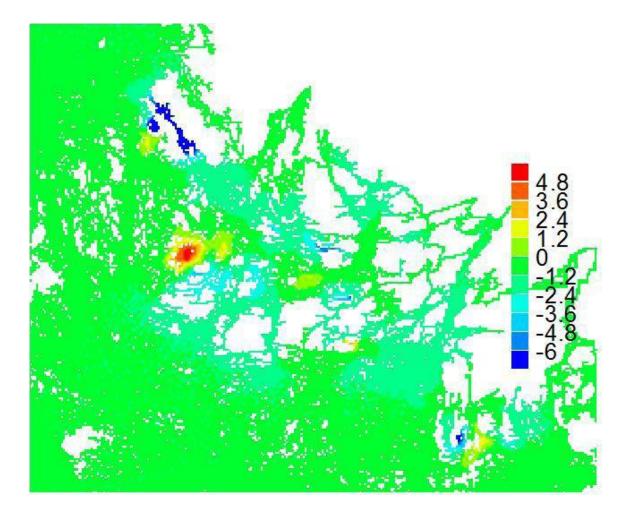
Archipelago and coastal area 554 km<sup>2</sup>





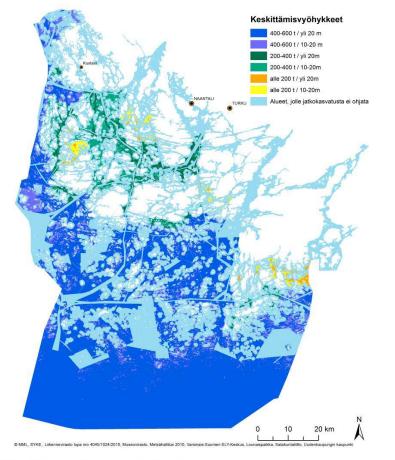
### Modelling the nutrient flow



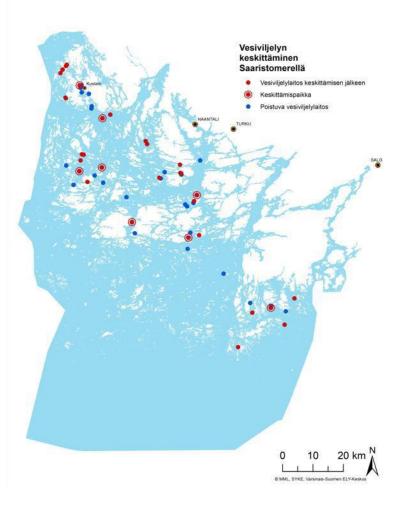

Currents

#### Nutrient load dispersion




#### Change in the algae amounts

Changes in the chlorophyll contents (%)



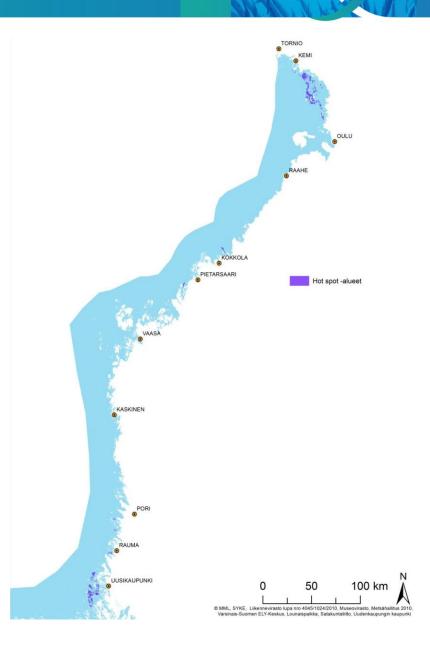



# In the archipelago Sea, zones gathering small units together








# Consequences in the Archipelago Sea according to the plan

- Algae content increase less than 4%
- The number of farming units by the participating companies will be 60% less
- More than 80% less summer houses under 0.5 km distance from the farms



Most promising areas for the future growth

less shelteredoffshore farming techniquesWind power parks?





#### **Profitability threshold**





## A good plan for the farmers?

- 1. Profitability
- Concurrence from Norway and Sweden (Estonia)
- 3. Heavy burden of permit bureaucracy





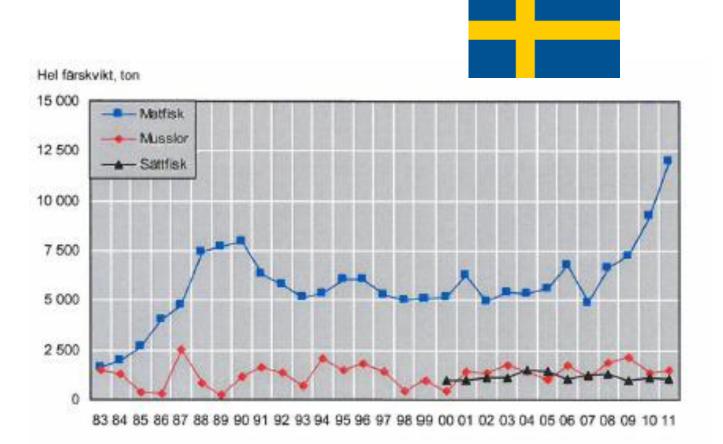
# Towards interactive fish farming governance? a comparison of Finland and Sweden

Mäkinen Timo, Salmi Pekka & Forsman Leena Aquacult Int DOI 10.1007/s10499-013-9700-3 Finnish Game and Fisheries Research Institute

# Fish farming governance goals in the Baltic Sea area

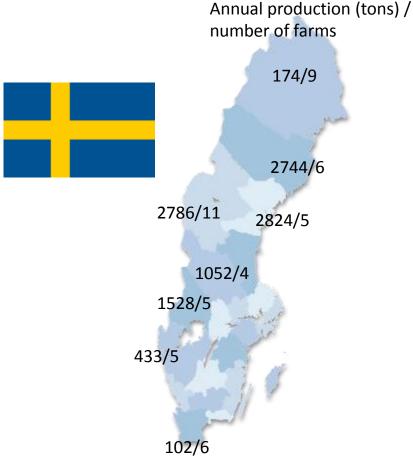
- Decreasing adverse ecological effects;
- Optimization of the use of coastal areas at regional, nationwide and the Baltic Sea level;
- Creating and maintaining firm jobs opportunities to private fish farmers in the rural archipelago areas;
- Supporting regional fisheries and economic development




#### coexist

#### Production 2011

|                                          | Sweden                                            | Finland                             |
|------------------------------------------|---------------------------------------------------|-------------------------------------|
| Production<br>(million kg)               | 12.0                                              | 11.3                                |
| Value of production,<br>(million €)      | 36.8                                              | 47.1                                |
| Share of rainbow trout of the production | 89.8 %<br>The rest mainly arctic char             | 87.6 %<br>The rest mainly whitefish |
| Number of farms (food fish)              | 79                                                | 178                                 |
| of which in the Baltic<br>Sea coast      | 18<br>(only rainbow trout)                        | 111                                 |
| Farms producing more<br>than 100 tons/a  | 15<br>Producing 95 % of the<br>Swedish production | only few                            |

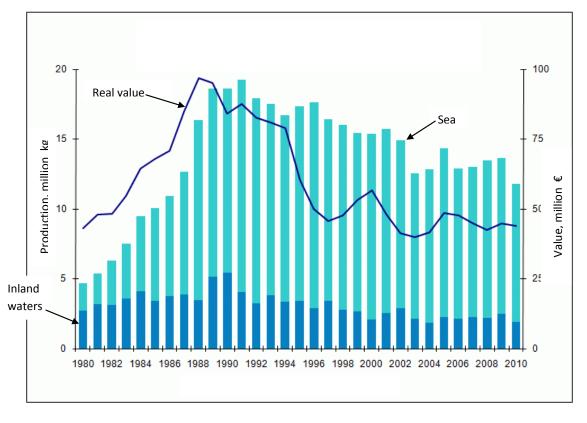

(Statistics Sweden (SCB), Statistics Finland (SVT))

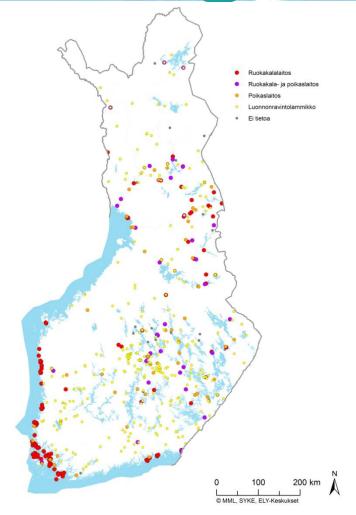
#### Swedish Production 1983-2011





# Swedish production and number of farms in 2011





Counties with production >100 tons: Norrbotten Västerbotten Västernorrland Jämtland Dalarna Värmland Värmland Västrä Götaland Skåne

Statistics Sweden (SCB)



#### Finnish production 1980-2010 (tons/a) and number of farms in 2010





Source: Kalankasvatuksen ympäristönsuojeluohje



## A permit needed when,

## Sweden

- When use of dry feed exceeds 40 tons/a, a permit from regional county is needed. If it is between 1,5-40 tons/a, a notification to the local municipality serves (the environmental legislation)
- According to the Fishery Act all aquaculture needs a permit from the regional county

## county

Interaction in coastal waters

#### Finland

- When production (=plusgrowth) exceeds 2 tons/a or use of dry feed 2 tons/a
- Or if the size of a pond culture is at least 20 ha

## Legislation

Very similar in both countries
Permit is required according to water and environment legislation in Finland and fisheries and environmental legislation in Sweden
One application is adequate in both countries
Rearing conditions has to be accepted according to animal protection act in Sweden



## Swedish application system

| Consultations            | <ul> <li>County Administrative Board</li> <li>Regulatory authority<br/>(municipality)</li> <li>Individuals speciallay<br/>affected by the project</li> </ul>             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental impact?    | <ul> <li>County Administrative Board<br/>makes a decision whether an<br/>application can be prepared<br/>and sent forward</li> </ul>                                     |
|                          | •County Administrative Board<br>•Supervisory/regulatory                                                                                                                  |
| Broader<br>Consultations | authorities<br>•Individuals specially affected<br>by the project<br>•Other state authorities,<br>municipalities, organizations,<br>groups affected by the project        |
| Application with<br>MKB  | <ul> <li>Application</li> <li>MKB (Environmental Impact<br/>Description) including report of<br/>consultations</li> <li>Information to the general<br/>public</li> </ul> |
|                          | <ul> <li>County Administrative Board</li> </ul>                                                                                                                          |
| Decision                 | decides if MKB is valid<br>•County Administrative Board<br>accepts the application                                                                                       |
| Sweden according to      | long Andoregon                                                                                                                                                           |

#### Sweden according to Jens Andersson



### Finnish application system

| Application                                  | <ul> <li>Regional State<br/>Administrative Agencies</li> </ul>                                                                                                                                                    |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Possible<br>supplements and<br>consultations | <ul> <li>Regional State<br/>Administrative Agencies</li> <li>Centre for Economic<br/>Development, Transport<br/>and the Environment<br/>management (ELY-center)</li> <li>Information to general public</li> </ul> |
| Comments                                     | <ul> <li>Regulatory authority (ELY-center, 2 departments)</li> <li>Municipality</li> <li>Individuals speciallay affected by the project</li> </ul>                                                                |
| Possible<br>consultations                    | <ul> <li>Regulatory authority (ELY-<br/>center)</li> <li>Regional State<br/>Administrative Agencies</li> </ul>                                                                                                    |
| Decision                                     | Regional State     Administrative Agencies                                                                                                                                                                        |

## Swedish system / Finnish system

Actors:

no differences, more or less the same actors

Institutions:

the role of the local level (municipality) is much stronger in Sweden

#### Governance:


Sweden: more interaction, collaboration and public-private partnership

Finland: more hierarchical governance, less communication

Principles/main focus:

Sweden: local society and environment Finland:effluent loads of nitrogen and phosphorus





# Monitoring

### Sweden

Counties often delegate monitoring to the municipalities Mainly similar as in Finland: - Annual and loading reports prepared by farmers - inspector's visits depending on the case (may in some cases be several times a year) The Centre for Economic Development, Transport and the Environment is monitoring Annual and loading reports prepared by farmers Inspector visits every second year



## The Swedish governance practice\*:

- Large farms in Sweden (over 1000 tons) in the lake area,
- In the sea area the capacity of the farms owned by Finns are 400-600 tons
- Farm sites are excellent, oligotrophic areas, depth 40-60m, no registered complains although the farms are located near shores
- More difficult to get permits for sea than for lake areas,
  for sea areas permits are usually for 10-15 years,
- -for lake areas permits are for an indefinite time
- Spatial plan is generally not yet in use in Sweden as it is going to be in Finland in 2013



\*interview of a Chief executive of a Fish farming enterprise in Åland islands

# The differences between the two countries\*:

"Swedish permit application system is heavy and lasts long (at least half a year) Environmental Impact Description (MKB) laborious." The process is easier in Åland county in Finland.

- "The real power in Sweden is with the MPD (Environment Advisory Board of County Administrative Board )
- Structural policy in Sweden is less supportive (less national funding) and meticulous bureaucracy after the support has been granted
- The biggest difference between the two countries is in markets and marketing: there is no big rainbow trout market in Sweden"

\*interview of a chief executive of a Fish farming enterprise in Åland islands



## Finnish farmers going "to exile" into Sweden\*

Over 5 million kg annually "Finnish" production in Sweden

## Big farms, big plans:

"We have now a million kg farm but it is planned to produce 4 million kgs on that farm in the near future. This plan is prepared in understanding with the local environmental authorities and with their consultative help."

The Production exported to Finland "There is no market for big rainbow trout in Sweden"

Sometimes the fish goes first to Estonia to be processed before exportation to Finland



\*The chief executive of a Finnish fish farming company

Are the governance goals in the Baltic Sea area in balance between the regions?

Decreasing adverse ecological effects;

Optimization of the use of coastal areas regionally, nation wide and at the Baltic Sea level;

Creating and maintaining firm jobs opportunities to private fish farmers in the rural archipelago areas;

Supporting regional fisheries and economic development



## **Economy of alternative production methods**

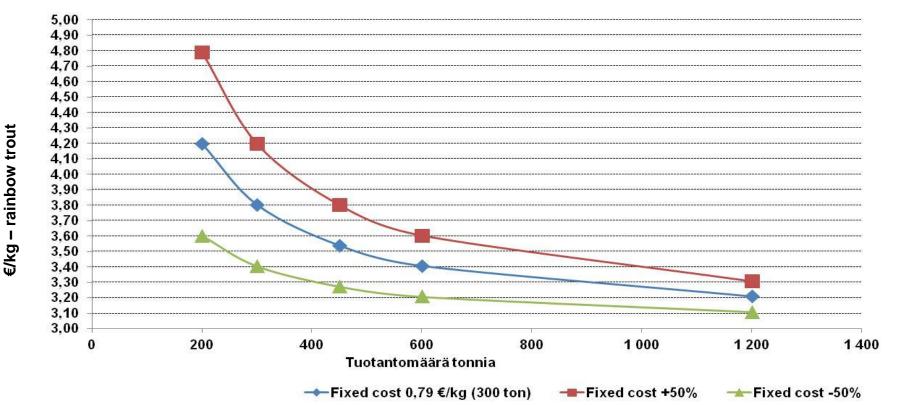
#### 1. Micro economy

- Standpoint: profitability of fish farm enterprises
- Production costs < market price
- Amortizing the investments = economic sustainability

#### 2. Macro economy, national economy

- Profitability makes production figures to increase
- Competitiveness starts the investments
- Investments, jobs, profits = value added = gnp = taxes = Well fare services
- Production amount \* price of the product = Value of the production
- Availability of a reasonable priced healthy food stuff

#### 3. Regional economy - Coexist case Study the Archipelago Sea


- Creating jobs for the rural area
- Indirect impacts: maintaining the services
- Indirect impacts: 2 \* Value of the production



## **Baltic Sea Feed**

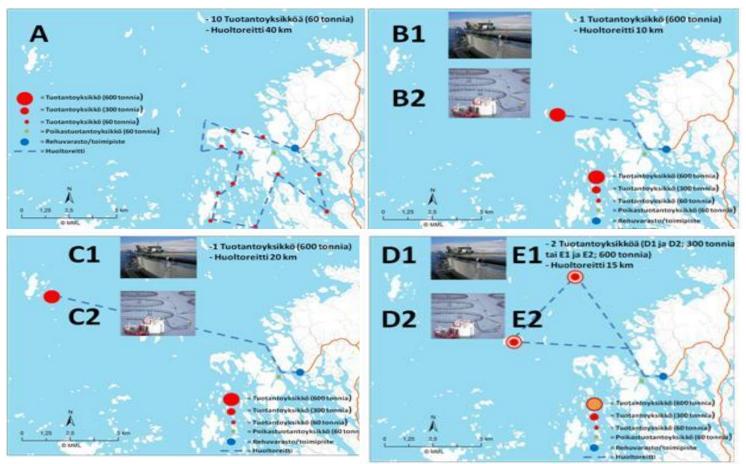
#### Benefit – incresed production amount

Incentive (National Aquaculture Programme)=> 1,5 \* permit => 300 tons farm => production costs decrease 0,26 €/kg => benefit 0,22 €/kg





## Nutrient compensation by low value fish removal




- 1. Increased costs
- Payment to fisherman about 0,58 €/kg
- Reduce the value of the fish as fur animal feed raw material 0,20 €/kg
- Remainder 0,38€/kg \* 1,1 = cost of one kg increased production (National Aquaculture Programme) = 0,42 €/kg
- 2. Benefit
- Increased production decreases share of fixed cost, see the graph before
- If the farm produces 300 tons and fixed costs are about 0,79 €/kg, a 150 tons increase in production decrease the production cost to 0,52 €/kg, thus, the benefit is 0,10 €/kg
- Profitable if the fixed costs are at least 0,41 €/kg
- Or if the market price of the fish is high



## **Spatial planning: site selection**

Background: more open areas with better water exchange allow bigger units





## **Economic impacts: site selection**

#### **Osxt and benefit**

Theoretically profitability will increase about 0,10 -0,15 €/kg

- In practice 0,14-0,47 €/kg (Many units merged + labor effectiveness \* 2)

|                           | BAU   | Near Far |        |        | 2 units | S      | 2 * production |        |        |
|---------------------------|-------|----------|--------|--------|---------|--------|----------------|--------|--------|
| <b>Production option</b>  | Α     | B1       | B2     | C1     | C2      | D1     | D2             | E1     | E2     |
|                           | €/kg  | €/kg     | €/kg   | €/kg   | €/kg    | €/kg   | €/kg           | €/kg   | €/kg   |
| Personel costs            | 0,058 | 0,027    | 0,007  | 0,034  | 0,011   | 0,033  | 0,011          | 0,032  | 0,010  |
| Cage and fish transfer    | 0,013 | 0,003    | 0,003  | 0,006  | 0,006   | 0,005  | 0,005          | 0,005  | 0,005  |
| Feeding/ observation      | 0,045 | 0,024    | 0,003  | 0,028  | 0,004   | 0,029  | 0,006          | 0,027  | 0,005  |
| Fuel costs                | 0,042 | 0,011    | 0,005  | 0,021  | 0,009   | 0,016  | 0,007          | 0,016  | 0,007  |
| Cage and fish transfer    | 0,012 | 0,003    | 0,003  | 0,006  | 0,006   | 0,005  | 0,005          | 0,005  | 0,005  |
| Feeding/ observation      | 0,030 | 0,008    | 0,002  | 0,015  | 0,003   | 0,011  | 0,002          | 0,011  | 0,002  |
| Investments               | 0,598 | 0,527    | 0,590  | 0,527  | 0,590   | 0,527  | 0,655          | 0,482  | 0,547  |
| Boats                     | 0,086 | 0,086    | 0,086  | 0,086  | 0,086   | 0,086  | 0,086          | 0,043  | 0,043  |
| Feeding equipment         | 0,026 | 0,003    | 0,067  | 0,003  | 0,067   | 0,003  | 0,132          | 0,002  | 0,067  |
| Cages and equipment       | 0,486 | 0,437    | 0,437  | 0,437  | 0,437   | 0,437  | 0,437          | 0,437  | 0,437  |
| Logistic cost total       | 0,698 | 0,564    | 0,601  | 0,582  | 0,610   | 0,576  | 0,673          | 0,530  | 0,564  |
| Change in production cost | 0,000 | -0,133   | -0,096 | -0,116 | -0,088  | -0,122 | -0,025         | -0,168 | -0,134 |



## Micro economy: summary

• With all aternative methods profitability will increase if production is allowed to increase or many small units merged to a big unit

•Low value fish removal as a compensation do not decrease the production costs if the company is a big one with a small share of the fixed costs

| Production cost by volume | Business as usual | Baltic feed     | Low value fish  | Centralizing    |
|---------------------------|-------------------|-----------------|-----------------|-----------------|
| Volume in cost breakdown  | 300 ton           | 450 ton         | 450 ton         | 300 ton         |
| Variable cost             | 2,67              | 2,71            | 2,81            | 2,61            |
| Semi variable cost        | 0,34              | 0,34            | 0,34            | 0,27            |
| Fixed cost                | 0,79              | 0,53            | 0,53            | 0,79            |
| Production cost           | 3,80              | 3,58            | 3,68            | 3,67            |
| Production volume (ton)   | Production cost   | Production cost | Production cost | Production cost |
| 300                       | 3,80              | 3,84            | 3,94            | 3,67            |
| 450                       | 3,54              | 3,58            | 3,68            | 3,40            |
| 600                       | 3,41              | 3,40            | 3,48            | 3,27            |
| 1200                      | 3,21              | 3,31            | 3,31            | 3,07            |



## Macro economy: summary

• On the level of the national economy the practical constraints are taken into account:

**1. Baltic Sea Feed:** 2 000 tons assumed production increase is based on present production figures, compensation factor value and on interviews of the farmers

**2. Low value fish removal:** 500 tons assumed production increase is based on evaluation of regions where the lv fish, fishermen and fish farmers are encountering each others

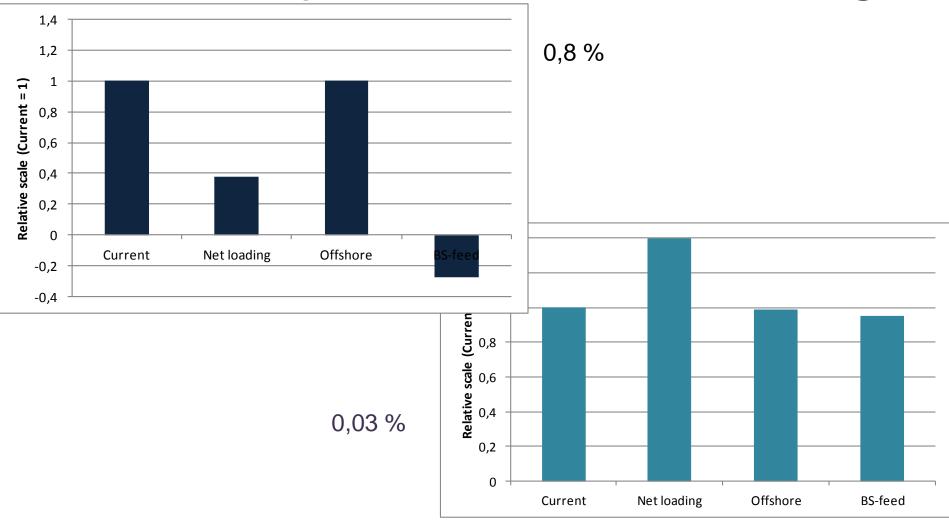
**3. Spatial planning:** 3000 tons assumed production increase is based on recognised potential farming regions and on the willingness of the companies to invest on those areas

•Total effect: ? Finnish production \* 2



| ıt |                      | Potential increase ton of fish production | Realistic increase ton of fish production | Direct production value Million of euros | Indirect. added production value Millions of euros | Employment direct person years | Indirect. added employment person years |
|----|----------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------|
|    | Balticfeed           | 4 000                                     | 2 000                                     | 11                                       | 22                                                 | 106                            | 220                                     |
|    | Compensation fishing | 4 000                                     | 500                                       | 3                                        | 6                                                  | 27                             | 55                                      |
|    | Spatial planning     | 10 000                                    | 3 000                                     | 16                                       | 32                                                 | 119                            | 285                                     |

## **Regional economy: summary**


| <ul> <li>Sout-Western Finland, the rural archipelago area</li> <li>Value added with indirect effects total 55 million euros</li> <li>Employment increases with indirect effects about 450 person year to the region</li> <li>Domestic fish production increase about 3 250 000 kg</li> <li>Other market effects? Availability of local fish better fish selection on the market, prices down ?</li> </ul> | h,                   | otential increase ton of fish production | alistic increase ton of fish production | ect production value Million of euros | irect. added production value Millions of euros | ployment direct person years | irect, added employment person years |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------|------------------------------|--------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                           |                      | Poter                                    | Realis                                  | Direct                                | Indire                                          | Em                           | Indire                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           | Baltic feed          | 1 500                                    | 1 000                                   | 6                                     | 11                                              | 53                           | 110                                  |  |
| COEXIST                                                                                                                                                                                                                                                                                                                                                                                                   | Compensation fishing | 2 000                                    | 250                                     | 2                                     | 3                                               | 13                           | 27                                   |  |
| Interaction in coastal waters                                                                                                                                                                                                                                                                                                                                                                             | Spatial planning     | 5 000                                    | 2 000                                   | 11                                    | 22                                              | 80                           | 166                                  |  |

## **Johtopäätökset**

- 1. Significant economic impacts if production figures are allowed to increase
- Management should take the incentives to form an essential part of the system
- Depends on the incentives how extensive the application of the methods will be
- 2. Voluntary no enforcement
- Availability of raw materials may change
- Practical contraints for some companies
- Profitability low -> incentives only
- 3. If no incentives, which the consequences will be?
- Disappering of the domestic fish from the market?
- 4. Low value fish, feed fish, should be used as human nutrition



## Eutrophication vs. climate change





## Conclusions

- Fish produced with Baltic Sea feed in (more) open sea areas is the most sustainable way to produce animal protein
- 1.Its environmantal impacts may be less than that of chicken, beef, or pig production2.Healthy food stuff
- 3.Market based prices: no direct production support



## Recommendations

- The Baltic Sea feed should be taken into use
- The national site selection plan for aquaculture should be put into practice through a concrete system with clear terms. The system should be an essential part of the aquaculture permit process
- Marine spatial planning should be developed further with regional comanagement as a goal
- Removal of LVF should be encouraged through economic support to the fishermen and fish farmers
- Removal of nutrients in the form of LVF should be taken as a compensation measure as one possible part of the aquaculture permits
- All management tools should be encouraged through planned incentives and by avoiding obligatory rules or enforcement because of the danger posed to profitability





## Thank you for your attention

Email: <u>timo.makinen@rktl.fi</u> Website: <u>www.coexistproject.eu</u>

http://www.coexistproject.eu/images/COEXIST/case\_studies/COEXIST\_Baltic Case\_Study\_Report\_FINAL.pdf